Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nat Commun ; 15(1): 2360, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491050

RESUMEN

SARS-CoV-2 clearance requires adaptive immunity but the contribution of neutralizing antibodies and T cells in different immune states is unclear. Here we ask which adaptive immune responses associate with clearance of long-term SARS-CoV-2 infection in HIV-mediated immunosuppression after suppressive antiretroviral therapy (ART) initiation. We assembled a cohort of SARS-CoV-2 infected people in South Africa (n = 994) including participants with advanced HIV disease characterized by immunosuppression due to T cell depletion. Fifty-four percent of participants with advanced HIV disease had prolonged SARS-CoV-2 infection (>1 month). In the five vaccinated participants with advanced HIV disease tested, SARS-CoV-2 clearance associates with emergence of neutralizing antibodies but not SARS-CoV-2 specific CD8 T cells, while CD4 T cell responses were not determined due to low cell numbers. Further, complete HIV suppression is not required for clearance, although it is necessary for an effective vaccine response. Persistent SARS-CoV-2 infection led to SARS-CoV-2 evolution, including virus with extensive neutralization escape in a Delta variant infected participant. The results provide evidence that neutralizing antibodies are required for SARS-CoV-2 clearance in HIV-mediated immunosuppression recovery, and that suppressive ART is necessary to curtail evolution of co-infecting pathogens to reduce individual health consequences as well as public health risk linked with generation of escape mutants.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Cell Host Microbe ; 32(2): 162-169.e3, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38211583

RESUMEN

Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Células T de Memoria , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética
3.
iScience ; 27(1): 108728, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38235336

RESUMEN

SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.

4.
Cell Mol Immunol ; 21(2): 184-196, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37821620

RESUMEN

This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Inmunidad , Anticuerpos Antivirales
5.
Clin Immunol ; 259: 109877, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141746

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.


Asunto(s)
COVID-19 , Enfermedades del Tejido Conjuntivo , Síndrome de Respuesta Inflamatoria Sistémica , Humanos , Niño , SARS-CoV-2 , Citocinas , Inmunoglobulina G , Fiebre , Anticuerpos Antivirales
6.
PLoS Pathog ; 19(11): e1011772, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943890

RESUMEN

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 59-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points, suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.


Asunto(s)
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Inmunidad Adaptativa , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunidad Humoral
7.
NPJ Vaccines ; 8(1): 119, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573434

RESUMEN

Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.

8.
medRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292954

RESUMEN

SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.

9.
medRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993404

RESUMEN

The impact of previous SARS-CoV-2 infection on the durability of Ad26.COV2.S vaccine-elicited responses, and the effect of homologous boosting has not been well explored. We followed a cohort of healthcare workers for 6 months after receiving the Ad26.COV2.S vaccine and a further one month after they received an Ad26.COV2.S booster dose. We assessed longitudinal spike-specific antibody and T cell responses in individuals who had never had SARS-CoV-2 infection, compared to those who were infected with either the D614G or Beta variants prior to vaccination. Antibody and T cell responses elicited by the primary dose were durable against several variants of concern over the 6 month follow-up period, regardless of infection history. However, at 6 months after first vaccination, antibody binding, neutralization and ADCC were as much as 33-fold higher in individuals with hybrid immunity compared to those with no prior infection. Antibody cross-reactivity profiles of the previously infected groups were similar at 6 months, unlike at earlier time points suggesting that the effect of immune imprinting diminishes by 6 months. Importantly, an Ad26.COV2.S booster dose increased the magnitude of the antibody response in individuals with no prior infection to similar levels as those with previous infection. The magnitude of spike T cell responses and proportion of T cell responders remained stable after homologous boosting, concomitant with a significant increase in long-lived early differentiated CD4 memory T cells. Thus, these data highlight that multiple antigen exposures, whether through infection and vaccination or vaccination alone, result in similar boosts after Ad26.COV2.S vaccination.

10.
Viruses ; 15(2)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36851798

RESUMEN

The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Epítopos , Inmunoglobulina G , Pandemias , Nucleocápside , Reinfección , Inmunoglobulina A
11.
Cell Rep Med ; 4(1): 100910, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36603577

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Sueroterapia para COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos , Infección Irruptiva , COVID-19/inmunología , COVID-19/terapia , SARS-CoV-2/inmunología
12.
Cell Rep Med ; 4(1): 100898, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36584684

RESUMEN

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.


Asunto(s)
COVID-19 , Inmunoglobulina G , Linfocitos T , Humanos , Formación de Anticuerpos , Linfocitos T CD4-Positivos , COVID-19/epidemiología , SARS-CoV-2
13.
AIDS ; 37(1): 105-112, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476455

RESUMEN

OBJECTIVES: This study aimed to investigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses 14 days after single-dose ChAdOx1 nCoV-19 (AZD1222) vaccination in black Africans with and without HIV in South Africa, as well as determine the effect of AZD1222 vaccination on cell-mediated immune responses in people with HIV (PWH) with prior SARS-CoV-2 infection. METHODS: A total of 70 HIV-uninfected people and 104 PWH were prospectively enrolled in the multicentre, randomized, double-blinded, placebo-controlled, phase Ib/IIa trial (COV005). Peripheral blood mononuclear cells (PBMCs) were collected from trial participants 14 days after receipt of first dose of study treatment (placebo or AZD1222 vaccine). T-cell responses against the full-length spike (FLS) glycoprotein of wild-type SARS-CoV-2 and mutated S-protein regions found in the Alpha, Beta and Delta variants were assessed using an ex-vivo ELISpot assay. RESULTS: Among AZD1222 recipients without preceding SARS-CoV-2 infection, T-cell responses to FLS of wild-type SARS-CoV-2 were similarly common in PWH and HIV-uninfected people (30/33, 90.9% vs. 16/21, 76.2%; P = 0.138); and magnitude of response was similar among responders (78 vs. 56 SFCs/106 PBMCs; P = 0.255). Among PWH, AZD1222 vaccinees with prior SARS-CoV-2 infection, displayed a heightened T-cell response magnitude compared with those without prior infection (186 vs. 78 SFCs/106 PBMCs; P = 0.001); and similar response rate (14/14, 100% vs. 30/33, 90.9%; P = 0.244). CONCLUSION: Our results indicate comparable T-cell responses following AZD1222 vaccination in HIV-uninfected people and PWH on stable antiretroviral therapy. Our results additionally show that hybrid immunity acquired through SARS-CoV-2 infection and AZD1222 vaccination, induce a heightened T-cell response.


Asunto(s)
COVID-19 , Infecciones por VIH , Vacunas , Humanos , SARS-CoV-2 , ChAdOx1 nCoV-19 , COVID-19/prevención & control , Leucocitos Mononucleares , Linfocitos T , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico
14.
J Virol ; 96(15): e0055822, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867572

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Asunto(s)
Anticuerpos Antivirales , Reacciones Cruzadas , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Reacciones Cruzadas/inmunología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Humanos , Evasión Inmune/inmunología , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
15.
J Immunol ; 209(3): 446-455, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35777848

RESUMEN

The development of a highly effective tuberculosis (TB) vaccine is likely dependent on our understanding of what constitutes a protective immune response to TB. Accumulating evidence suggests that CD4+ T cells producing IL-22, a distinct subset termed "Th22" cells, may contribute to protective immunity to TB. Thus, we characterized Mycobacterium tuberculosis-specific Th22 (and Th1 and Th17) cells in 72 people with latent TB infection or TB disease, with and without HIV-1 infection. We investigated the functional properties (IFN-γ, IL-22, and IL-17 production), memory differentiation (CD45RA, CD27, and CCR7), and activation profile (HLA-DR) of M. tuberculosis-specific CD4+ T cells. In HIV-uninfected individuals with latent TB infection, we detected abundant circulating IFN-γ-producing CD4+ T cells (median, 0.93%) and IL-22-producing CD4+ T cells (median, 0.46%) in response to M. tuberculosis The frequency of IL-17-producing CD4+ T cells was much lower, at a median of 0.06%. Consistent with previous studies, IL-22 was produced by a distinct subset of CD4+ T cells and not coexpressed with IL-17. M. tuberculosis-specific IL-22 responses were markedly reduced (median, 0.08%) in individuals with TB disease and HIV coinfection compared with IFN-γ responses. M. tuberculosis-specific Th22 cells exhibited a distinct memory and activation phenotype compared with Th1 and Th17 cells. Furthermore, M. tuberculosis-specific IL-22 was produced by conventional CD4+ T cells that required TCR engagement. In conclusion, we confirm that Th22 cells are a component of the human immune response to TB. Depletion of M. tuberculosis-specific Th22 cells during HIV coinfection may contribute to increased risk of TB disease.


Asunto(s)
Coinfección , Infecciones por VIH , Tuberculosis Latente , Mycobacterium tuberculosis , Linfocitos T Colaboradores-Inductores , Tuberculosis , Linfocitos T CD4-Positivos , Infecciones por VIH/complicaciones , Humanos , Interleucina-17 , Células TH1 , Células Th17
16.
Viruses ; 14(6)2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35746693

RESUMEN

In South Africa, high exposure to SARS-CoV-2 occurs primarily in densely populated, low-income communities, which are additionally burdened by highly prevalent Human Immunodeficiency Virus (HIV). With the aim to assess SARS-CoV-2 seroprevalence and its association with HIV-related clinical parameters in non-hospitalized patients likely to be highly exposed to SARS-CoV-2, this observational cross-sectional study was conducted at the Gugulethu Community Health Centre Antiretroviral clinic between October 2020 and June 2021, after the first COVID-19 wave in South Africa and during the second and beginning of the third wave. A total of 150 adult (median age 39 years [range 20−65 years]) HIV-infected patients (69% female; 31% male) were recruited. 95.3% of the cohort was on antiretroviral therapy (ART), had a median CD4 count of 220 cells/µL (range 17−604 cells/µL) and a median HIV viral load (VL) of 49 copies/mL (range 1−1,050,867 copies/mL). Furthermore, 106 patients (70.7%) were SARS-CoV-2 seropositive, and 0% were vaccinated. When stratified for HIV VL, patients with uncontrolled HIV viremia (HIV VL > 1000 copies/mL) had significantly higher odds of SARS-CoV-2 seropositivity than patients with HIV VL < 1000 copies/mL, after adjusting for age, sex and ART status (p = 0.035, adjusted OR 2.961 [95% CI: 1.078−8.133]). Although the cause−effect relationship could not be determined due to the cross-sectional study design, these results point towards a higher risk of SARS-CoV-2 susceptibility among viremic HIV patients, or impaired HIV viral control due to previous co-infection with SARS-CoV-2.


Asunto(s)
COVID-19 , Infecciones por VIH , Adulto , Anciano , Recuento de Linfocito CD4 , COVID-19/epidemiología , Estudios Transversales , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2 , Estudios Seroepidemiológicos , Sudáfrica/epidemiología , Carga Viral , Viremia/tratamiento farmacológico , Viremia/epidemiología , Adulto Joven
18.
Cell Rep Med ; 3(3): 100535, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35474744

RESUMEN

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.


Asunto(s)
COVID-19 , Vacunas Virales , Ad26COVS1 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , SARS-CoV-2/genética
19.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35233544

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , SARS-CoV-2/inmunología , Ad26COVS1/inmunología , Ad26COVS1/uso terapéutico , Adulto , Anciano , COVID-19/sangre , COVID-19/prevención & control , COVID-19/virología , Estudios de Cohortes , Reacciones Cruzadas , Femenino , Células HEK293 , Humanos , Células Jurkat , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/inmunología , Células THP-1 , Resultado del Tratamiento , Vacunación/métodos
20.
PLoS One ; 17(2): e0262442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35120133

RESUMEN

In late December 2019, pneumonia cases of unknown origin were reported in Wuhan, China. This virus was named SARS-CoV2 and the clinical syndrome was named coronavirus disease 19 (COVID-19). South Africa, despite strict and early lockdown has the highest infection rate in Africa. A key component of South Africa's response to SARSCoV2 was the rapid scale-up of diagnostic testing. The Abbott SARS-CoV2 assay detects IgG antibodies against the Nucleocapsid (N) protein of the SARS-CoV2 virus. This study undertook to validate and evaluate performance criteria of the Abbott assay and to establish whether this assay would show clinical utility in our population. Positive patients (n = 391) and negative controls (n = 139) were included. The Architect-i and Alinity-i systems were analyzers that were used to perform the SARS-CoV-2 IgG assay. In-house ELISA was incorporated into the study as a confirmatory serology test. A total of number of 530 participants was tested, 87% were symptomatic with infection and 13% were asymptomatic. When compared to RT-qPCR, the sensitivity of Architect and Alinity SARS-CoV2 assays was 69.5% and 64.8%, respectively. Specificity for Architect and Alinity assays was 95% and 90.3%, respectively. The Abbott assay was also compared to in house ELISA assay, with sensitivity for the Architect and Alinity assays of 94.7% and 92.5%, respectively. Specificity for Abbott Alinity assays was 91.7% higher than Abbott Architect 88.1%. Based on the current findings testing of IgG after 14 days is recommended in South Africa and supports other studies performed around the world.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Inmunoglobulina G/sangre , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Sudáfrica/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...